If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-7x-54=0
a = 3; b = -7; c = -54;
Δ = b2-4ac
Δ = -72-4·3·(-54)
Δ = 697
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-\sqrt{697}}{2*3}=\frac{7-\sqrt{697}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+\sqrt{697}}{2*3}=\frac{7+\sqrt{697}}{6} $
| |3x+16|=16 | | -2|2x+6|-6=-12 | | 4b-5=-9 | | X^2+6x=107 | | 7(r-9)=-42 | | 3(1-3x)=2(-4x=7) | | 6t^2+5=11t | | -2(6n+3)=90 | | -5y-5(-6-2y=0 | | 3(2x+4)-5=2(4+3x)-7 | | 5(r+9)+-2(1-r)=1 | | 152=-11x-13 | | 4(3c-1)-3=7c+3 | | 10(x-7)=5x | | 0.50(x+3)=2(x-3) | | 14+3x=9x-5 | | x-2=3(2x-3) | | 30(p^2-1)=11 | | 128=-8(-8-4m) | | S2-14s+48=0 | | 2-(8x-1)=-13-6x | | 6t^2+5=11 | | b/9+50=60 | | -7/3r=-63/16 | | .08x-11=0.3x+41 | | 30(p2-1)=11 | | 6t^+5=11 | | 4(2-x)=2/3(3x-15) | | l=-3=9 | | F(x)=65x+100 | | -3+6x=x+27 | | 3/4(x-4)=2 |